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Abstraet--A group of solid particles were hung by slender rods in a pipe to make a model of 
two-phase flow of coarse particles. Pressure gradient and velocities were measured for different types 
of the models. The drag on the particles (spheres) were obtained from measurements of pressure 
gradient with some assumptions. The results are summarized as follows. (1) Mean velocities of fluid 
are lower in the central part of the pipe than in the circumferential part. Turbulence is remarkably 
increased by particles. The spectrum distribution of turbulent velocity becomes flatter. These results 
are similar to the gas-solid flow of coarse particles in a vertical pipe. (2) At a large Reynolds number, 
the drag coefficient per one sphere in the group is larger than that of a single isolated sphere in a 
uniform flow. When the spheres are arranged along the same line in the longitudinal direction, the 
drag coefficient becomes smaller as the longitudinal distance between the spheres is shortened. 

1. I N T R O D U C T I O N  

Gas-solid flows are directly related to pneumatic conveying. Many research workers in this 
field have been putting a priority on investigation of the gross nature of flow such as the 
relation between the particle flow rate and pressure drop. Though some workers have paid 
attention to particle motion in the pipe, our understanding of the phenomena inside the pipe 
is generally poor. Nevertheless, the particle motion is often analysed by applying simple 
models. For instance, the equations of particle motion is based on the drag law obtained for a 
single particle in a uniform flow. As the concentration of particles becomes larger, such 
simple assumptions are not allowed, because mutual interaction between the particles and 
pipe flow as well as between the particles themselves influences the phenomena. If the 
Reynolds number based on the particle size and relative velocity is sufficiently low so that the 
flow can be analysed by using the Stokes approximation, the effects of the mutual interaction 
are clarified theoretically (Happel & Brenner 1973). However, the Reynolds number 
common to usual pneumatic conveying is much higher than the one in the region of the 
Stokes law. Therefore we can not help depending on experimental information with respect 
to these problems. Lee (1979) and Tsuji et al. (1982a) have made experiments on the mutual 
interaction between two spheres. The flow approaching the spheres was uniform and laminar 
in their experiments, and thus it is desired that experiments investigating the mutual 
interaction are made in more realistic situations. 

It is difficult to directly measure the fluid drag on a particle in irregular motion in the 
pipe. Therefore the drag is measured by indirect methods. In one of them, particles are 
suspended in a vertical pipe flow, and the drag is obtained from measurements of the weight 
of particles and fluid velocity which keeps the particles in a neutral state of suspension 
statistically (neither rise nor fall). There are many reports of such experiments in both 
gas-solid (Harada et al. 1964, Siegel 1970, Flatow 1973 and Sunami et al. 1978) and 
liquid-solid flows (Ayukawa et al. 1969). It is known that drag coefficients obtained from a 
suspension experiment take larger values than those of a single particle in the uniform flow. 
Apart from the suspension experiment, an attempt was also made on estimating the drag 
coefficient from the pressure gradient along the pipe in which a group of particles exists. 
Stinzing (1971) hung a group of cylindrical particles in a vertical pipe by using thin threads 
and measured the pressure gradient. He reported that the drag coefficient per one particle 
becomes about one-half of the value of the corresponding single particle. This result is 
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Figure I. Experimental pipeline. 1 blower, 2 valve, 3 flow straightener, 4 total Pitot tube, $ 
pressure tap, 6 reference pressure tap, 7 test section, 8 sleeve, 9 flow straightener, 10 bend. 

opposite to the results from the Suspension experiment. Brauer (1979) fixed spheres in a 
square duct and investigated the properties of turbulence by flow visualization. 

The present experiment is similar to that of Stinzing (1971 ), but spherical particles were 
fixed to a pipe by a number of slender rods which crossed the pipe section in the transverse 
direction. This paper shows the results of the pressure gradient and drag coefficient as well as 
distributions of mean and turbulent velocities. From the present work it Will be found that 
fluid drag on particles in pneumatic conveying does not follow the standard drag curve. 

2. EXPERIMENTAL A R R A N G E M E N T  

2.1 Pipeline 
Figure 1 shows the experimental pipeline. The air was supplied from a blower 1 and the 

flow rate was adjusted by valves 2. The test section was made of a transparent acrylic pipe of 

a 

b 

Figure 2. Grid pattern. 

O 

(a) Hexagonal grid. (b) Hexagonal grid. (c) Square grid and single grid. 
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N o .  Gr id  Z I(mm) ~ .10  z m 
1 Hexazonal  46 19.6 6.706 4 ~ , -  ~8 
2 Square 26 20 ~.731 30 ,~ .40  

* 21 ~0 !~,1~4 20, , ' -26 
- 21 40 2.366 15 --  20 
- 15 60 1.577 9.6.-- 13 

11 80 1.18~ 7 . 2 - 9 . 6  
7 9 100 0,946 5 . 7 - 7 . 6  
8 ~ 8 120 0.789 4 . 8 - 6 . ~  
9 SinKle 1 

Table I. Specifications of models. 
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J, number of grids; !, interval between grids; ~, volume concentration of 
spheres; m, loading ratio 

D - 100 mm in diameter and 1000 mm in length, and was situated sufficiently far from the 
pipe bend. The model of the group of particles was set in the test section. The air flow rate 
was measured by a Pitot tube at the outlet of the pipeline. The test section had some pressure 
holes for the measurements of the pressure gradient in the longitudinal direction. Velocities 
within the pipe were measured by a. hot wire probe of I type. The probe was traversed three 
dimensionally in the x, y and z directions. Preciseness of traverse was about 0.1 mm in all 
directions. 

The analogue signal from the hot wire anemometer was digitized by an A/D converter 
and processed by a micro computer. The test section was connected to the pipeline by 
movable sleeves. 

2.2 Model of a group of spheres 
We used plastic spheres of d - 11.6-mm diameter for the model, interconnected by 

slender metal rods of 0.5 mm in diameter. The following models were used in the present 
work. 

(l) Hexagonal grid model (Model 1) 
Spheres were arranged alternately as shown in figure 2(a) and (b), and the distance 

between two neighboring spheres was 24 mm (--2d). This model had the largest concentra- 
tion of spheres. 

(2) Square grid model (Models 2, 8) 
As shown in figure 2(c), square grids having nine spheres at one section are arranged 

along the pipe. The distance between the grids were varied from 20 to 120 mm. The spheres 
were lined up in the longitudinal direction. 

I 

Flow 

Figure 3. Coordinate system. 
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Figure 4. Pressure distribution (model 5). 
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(3) Single grid model (Model 9) 
This model corresponds to the case that only one square grid model is set up in the pipe. 
Table 1 presents specifications of the models. The loading ratio m in the table 

corresponds to the ease where particles, the density ratio of which to air is 1000, were 
conveyed at velocities of 0.6 to 0.8 times that of air. The above values of velocity ratio were 
chosen because velocity ratios in practical pneumatic conveying of coarse particles are 
usually in such a range. It is seen from the values of m that a particle flow of the Model 1 
would correspond to dense phase conveying. 

Figure 3 shows the coordinate system used in this paper. 

3. RESULTS 

3.1 Pressure gradient 
Figure 4 shows an example of the pressure distribution along the pipe, where L is the 

distance from the reference point on the upstream side of the model and P is the static 
pressure. The pressure gradient becomes constant after the first grid. The same tendency was 
observed in the other models. 

Figure 5 presents the pressure distribution of the single grid model, where z is the 
distance from the grid. The pressure sharply drops just before the point z - 0 and shows the 
minimum value at the position of the grid, which is due to the flow contraction. After the 
grid, the pressure recovers to some extent and then from the position of z/d - 12 ~ 13, it 
varies with the same gradient as that of the upstream side. 
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Figure 5. Pressure distribution (single grid model). 
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Figure 6. Relation between the pressure gradient and mean velocity relative to the spheres. For 
legend see Table 1. 

Figure 6 shows the relation between the pressure gradient AP/AL and the mean velocity 
relative to the spheres. This relative velocity U is defined by 

U =~ g/(l - ~'), [1] 

where V is the mean air velocity averaged over the pipe cross section and 0' is the volume 
concentration of the spheres and rods (supports). It is seen in figure 6 that the pressure 
gradient AP/AL is proportional to U 2 as is the pressure gradient in an ordinary pipe flow. 

The total pressure drop consists of the pressure drop due to the friction loss and the one 
due to the drag force on the spheres and supports. Therefore, the pressure drop AP is given 
as 

AP- .Apf + AP, + AP, . 
friction drag (support) drag (sphere) [2] 

Let us assume the same expressions as the friction loss AP/for the single phase flow and the 
drag force AP, for the circular cylinder in the uniform flow. Hence, 

AP:/AL - (~/D) '/2 pU ~, 

,x?, _ C, i/~ pU~ d, t/(V,~ D~). 

[3] 

[4] 

It is often assumed in analyses of pneumatic conveying that the friction loss obeys the same 
law as in the single phase flow. Exactly speaking, this assumption is not allowable for the 
dense phase flow, but in the dense phase flow the friction loss is very small compared with the 
Loss due to drag on particles. Hence, rough estimation of the friction loss does not cause 
serious errors. Thus the coefficient X is given by the well-known Blasius formula. 

~, - o.3164/RY' (R, - up~,,). IS] 

Equation (4) is derived from the momentum theorem which gives the relation between the 
drag force and the pressure drop in the pipe. In (4), I is the total length of the supports and U, 
is the velocity relative to the supports. U, is given by 

u, = v/(1 - ¢,) - uo + q:)/O - ¢~) [6] 
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Figure 7. Relation between the pressure gradient and volume concentration of the spheres. 

in which @ is the ratio of the projected area of spheres to the pipe cross section. The drag 
coefficient Cd is also affected by the fluid turbulence. However, the fraction of AP, is much 
smaller than that of AP,. Therefore we give Cd as a function of the Reynolds number U,d,/o 
following the standard drag curve of the circular cylinder. 

Using the expressions of [2] to [6], we obtain the pressure drop caused by the presence of 
the spheres from the measured values of the total pressure drop. Figure 7 shows the relation 
between the pressure drop AP~/AL and the volume concentration of the spheres. From the 
figure we find that 

AP,/AL ~ ¢~. [7] 

It was also confirmed that the pressure gradient AP,/AL is proportional to U 2. Therefore, the 
pressure gradient AP,/AL is expressed as 

Ap,/AL - (~/D) y2pU ~ [81 

and the coefficient ~" becomes 

~" ~ a ¢  ~. [9] 

Experimental values of a and/9 obtained by the least square method were 

a - 2.58, /~ - 0.75. [10] 

Summarizing the above results, the total pressure gradient in the pipe having the group 
of spheres can be given by 

I c,e,(u L) (1 ÷ *'YI Ap a@ ~ + X + lpU ' /D  [11] 

3.2 Drag coefficient of sphere 
According to the momentum theorem, the pressure drop is related to the drag on the 

spheres, 

A p. ,/, ,~ D 2 _ ¢o ,/2p U~ ,/,,~ a~ N. [12] 

where N is the total number of the spheres in the region concerned. In the case of the single 
grid model, the pressure distributions in the upper and downstream sides with constant 
gradients are extrapolated to the position of the grid. The difference in the intercepts 
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Figure 8. Relation between the drag coefficient and Reynolds number. For legend see Table 1. 

between both extrapolated lines gives the pressure drop (AP, + AP,). Using (4) to subtract 
AP, from (AP, + AP,), we obtained the pressure drop AP, and thus CD for each sphere. The 
coefficient CD are plotted against the Reynolds number R,~ - Ud/J, in figure 8, where the 
standard drag curve (Morsi & Alexander 1972) of a single sphere in the uniform flow is 
shown for comparison. In general, Cb of the group of spheres take larger values than the 
standard curve. This is caused by the effects of turbulence and wall as is pointed out by Clift 
et al. (1978). CD of the square grid models becomes smaller as the concentration becomes 
larger. The spheres in the square grid models are arranged along the same line in the 
longitudinal direction, and therefore when the distance between grids is smaller, the rear 
sphere is located in the wake of the front one, and consequently, the drag force on the rear 
sphere is reduced. 

CD of the single grid has the largest value among the models, which is because there is no 
interaction between the grids. The sphere in the hexagonal grid model are arranged 
alternately along the flow, and thus C~ is large compared with the square grid models even 
though the distance between the grids is smaller than those square grid models. 

The drag coefficient of a sphere in turbulent flow generally depends on the intensity of 
turbulence and Reynolds number. There is a range of the Reynolds number in which the 
drag increases markedly due to turbulence (Cl i f t& Gauvin 1978). Stinzing (1971) 
measured the drag force on a group of cylindrical particles in a similar way to the present 
method and reported that the drag for one particle in the group is smaller than a single 
isolated particle. However, it should be noticed that there are several differences between his 
experiment and ours. First, the pipe flow in his experiment is considered not to be fully 
developed, and the supports (thin threads) of particles were parallel to the pipe axis. 
Therefore, the turbulent intensity in his experiment is considered to be small compared with 
the present case. Consequently, only the effect of particle interaction which reduces the drag 
was observed, while the effect of turbulence which has the tendency to increase the drag 
hardly appeared. It is also noted that the Reynolds number and particle size in the 
experiment of Stinzing (1971) were smaller than the present ones. Even the present results 
show that C~ becomes smaller than the standard curve for the Reynolds number smaller than 
3000. From the above results it is found that the drag on the spheres in a group is affected by 
the Reynolds number, arrangement of spheres and turbulent intensity. 

The present results are the same as the results from an experiment of particle suspension 
in a vertical flow in that both results indicate that the drag coefficient is larger than the 
standard curve. However, there are some differences between them as well. In the 
experiment of particle suspension, the larger the particle concentration, the larger the drag. 
The square grid models in this experiment show the opposite tendency to that. That is, Cb 
decreases with increasing the concentration. In actual two-phase flows, particles change 
relative positions with each other as they move along. Therefore, the square grid model does 
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not reflect the real condition, but hexagonal or  single grid model is near the actual 
suspension. The drag of spheres in the hexagonal or single grid model is obviously larger than 
the standard curve. Thus, the drag coefficient larger than the standard curve should be used 
in an analysis of pneumatic conveying of coarse particles. 

Next, the drag coefficient of particles in a fluidized or packed bed is compared with the 
present one. The drag coefficient corresponding to the Ergun's formula is given as 

7 
Co = 200 (1 - (p)2R,d + 3(1 - ¢)" [13] 

This equation (Soo 1967) shows the effect of the particle concentration on Co. Substituting 
the present value of ~ to [ 13] and comparing CD with the present results, it is found that Co 
calculated from [13] becomes several times larger than the largest value in the present 
experiment. The range of ¢ in the ftuidized or packed bed is much larger than those in the 
present experiment. Therefore it is no wonder that the empirical formula for large 4~ can not 
be applied to tile case for small 4. 

3.3 Velocity distribution 
Figure 9 shows contour lines of equal mean velocity and turbulent intensity. In this 

paper, the turbulent intensity is defined by 

7", = ~ / ~  [ 14 ]  

in which u' and ~ are, respectively, the longitudinal components of fluctuating and 
time-averaged mean velocities. The figures show characteristic structures of flow field 
corresponding to the position of spheres. That is, the mean velocity is small and turbulent 
intensity is large behind the sphere. 

Figure 10 shows the distributions of mean velocity and turbulent intensity. The mean 
velocity distributions differ markedly from that of the single phase pipe flow even at the most 
downstream section. Also, a tendency is observed that the radial position of the maximum 
velocity approaches to the wall as the flow moves downstream. The distribution along the line 
0 = 45* shows the same tendency as in figure 10 in spite that the sphere exists near the wall 
on the line 0 - 45*. Measurements of some gas-solid pipe flows show that the mean velocity 
distributions are concave with the center velocity being lower than circumferential velocity 
(Vollheim 1965 and Tsuji et al. 1982b, 1984). The present distribution shown in figure 10 is 
qualitatively the same as such results. 

The distribution of turbulent intensity changes from an uneven profile to a flat one as the 
flow moves downstream, but quantitatively the intensity remains higher compared to 
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Figure 9. Contour lines of equal mean velocity and turbulent intensity. (Model 5, z/d - 2, 
U- 5.25 m/s.) 
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Figure 10. Distributions of mean velocity and turbulent intensity. (Model 8, 0 - 90% U - 5.21 
m/s.) (a) Mean velocity. (b) Turbulent intensity. 
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N 

ordinary pipe flows. For instance, the intensity at the pipe center is three times larger than 
that of the ordinary pipe flow even at the most downstream section z / d -  8. Recent 
measurements by Laser Doppler velocimeters show that the turbulent intensities increase in 
the presence of large particles (Tsuji et al. 1982, 1984), which qualitatively agrees with the 
above results. 

We measured the distributions of mean and turbulent velocities along the line 0 - 45 ° as 
well as 0 - 90 ° in order to see the effects of the supports. It was found that the effects were 
not observed in the downstream section from z/d - 3. Measurements of the flow fields were 
not made in the case of the hexagonal grid model because of difficulties of traversing the hot 
wire probe. 

In this work we paid attention to the probability density function of the fluctuating 
velocities, because it is also an important property of fluctuation. The characteristic features 

z N Model 8 
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Figure 11. Skewness and flatness factors. 

I0  

5 

I 

0.50 0 0.25 0 . 5 0  

r i D  

b 
(a) Skewness factor. (b) Flatness factor. [For legend 
so= (a).] 
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of the function are generally seen in the skewness and flatness factors which are defined by 

s = 

F = ". 
[zs] 

The results of S and F are shown in figure I 1 instead of their distributions. The normal 
distribution of the probability gives 0 and 3, respectively, to S and F. The skewness and 
flatness factors in the wake region of spheres largely differ from those values of the normal 
distribution, i.e. S is negative and F is larger than 3. The same tendency in S and F as the 
above results were also observed in measurements of the gas-solid pipe flow (Tsuji e t  a l .  

1982). 
Figure 12 shows the magnitude spectra of the turbulent velocities which are obtained by 

an FFT (fast Fourier transform) analyser. The magnitude spectrum is defined by 

u '''i = f o ® S ~ ( f )  d f  [16] 

The results in other sections were similar to figure 12. We find that the spectrum in the 
presence of spheres is flat compared with the one of the sphere-free flow. Such a flattening 
effect of the sphere is observed also in the spectrum of a duct flow with fixed spheres, as 
Brauer (1979) reviewed. Characteristic properties of the wake of spheres clearly appear in 
the mean and turbulent velocity distributions, and so we expected that there would be a peak 
in the spectrum distribution which corresponds to shedding vortices from the spheres. 
Contrary to our expectation, such a peak was scarcely found in most measuring points. 
However, at some points, a weak peak was found which is indicated by an arrow in figure 12. 
The Strouhal numbers corresponding to the peak were scattered from St = 0.10 to 0.23. 

A c k n o w l e d g e m e n t - - T h e  authors wish to thank Mr. T. Funabiki and Mr. A. Sato for their 
assistance in the present experimental work. 
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Figure 12. Spectra of fluctuating velocities (model 8, 0 - 90 °, r i D  - 0.12,  z / d  - 3, 
U - 5. i 6 re~s). 
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NOMENCLATURE 

drag coefficient of sphere 
drag coefficient of cylinder 
pipe diameter 
diameter of sphere 
diameter of rod (support) 
flatness factor defined by [ 15] 
interval between grids 
number of grids 
longitudinal distance from the reference point 
length of rods 
loading ratio 
number of spheres 
static pressure 
pressure drop 
pressure drop due to friction loss 
pressure drop due to drag on rods 
pressure drop due to drag on spheres 
Reynolds number UD/u 
Reynolds number Ud/u 
radius 
skewness factor defined by [15] 
amplitude spectrum defined by [16] 
turbulent intensity 
velocity defined by [ 1 ] 
local mean velocity 
turbulent velocity 
superficial velocity based on unobstructed flow area 
coordinates shown in figure 3 
angle shown in figure 3 
friction coefficient 
volume concentration of spheres 
volume concentration of spheres and rods 
ratio of the projected area of spheres to the pipe cross section 
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